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Purpose. The objective of the present analysis was to explore the use of stochastic differential equations

(SDEs) in population pharmacokinetic/pharmacodynamic (PK/PD) modeling.

Methods. The intra-individual variability in nonlinear mixed-effects models based on SDEs is

decomposed into two types of noise: a measurement and a system noise term. The measurement noise

represents uncorrelated error due to, for example, assay error while the system noise accounts for

structural misspecifications, approximations of the dynamical model, and true random physiological

fluctuations. Since the system noise accounts for model misspecifications, the SDEs provide a diagnostic

tool for model appropriateness. The focus of the article is on the implementation of the Extended

Kalman Filter (EKF) in NONMEM\ for parameter estimation in SDE models.

Results. Various applications of SDEs in population PK/PD modeling are illustrated through a

systematic model development example using clinical PK data of the gonadotropin releasing hormone

(GnRH) antagonist degarelix. The dynamic noise estimates were used to track variations in model

parameters and systematically build an absorption model for subcutaneously administered degarelix.

Conclusions. The EKF-based algorithm was successfully implemented in NONMEM for parameter

estimation in population PK/PD models described by systems of SDEs. The example indicated that it

was possible to pinpoint structural model deficiencies, and that valuable information may be obtained by

tracking unexplained variations in parameters.

KEY WORDS: degarelix; Extended Kalman Filter; NONMEM; parameter tracking; population PK/PD
modeling; stochastic differential equations, systematic model development.

INTRODUCTION

Traditionally in population pharmacokinetic/pharmaco-
dynamic (PK/PD) modeling, the variability is decomposed

into inter-individual and intra-individual variability. The
intra-individual (residual) variability accounts not only for
the various environmental errors such as those associated
with assay, dosing, and sampling errors, but also for errors
associated with structural model misspecifications and
approximations in the differential equations and variations
in model parameters over time. Since most of these errors
cannot be considered real sources of uncorrelated measure-
ment noise, the sources of the intra-individual error should
preferably be separated (1,2).

Erroneous dosing, sampling history, as well as structural
model misspecifications may introduce time-dependent or
serial correlated residual errors. Karlsson et al. (3) introduce
three types of residual error models to population PK/PD
data analysis to account for more complicated residual error
structures. The study concluded that the inter-individual
variability is overestimated while the residual variability is
underestimated when serial correlations are present in the
residuals but not accounted for. Neither accuracy nor
precision of the structural parameters was improved by
accounting for serial correlations. Only the variance compo-
nents were more accurately estimated. Furthermore, time-
dependent residual errors due to inaccurate recording of
sampling times are very difficult to handle when dosing
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patterns are more complex than single-dose or steady-state
data. Another source of variability is unaccounted variations
in model parameters. Part of this variability can sometimes
be linked to surrogate variables (e.g., demographic cova-
riates) but the variability is most often not predictable owing
to the governing processes not being fully understood or too
complex to model deterministically.

More sophisticated methods are therefore required to
handle models with structural model misspecifications. This
motivates the following questions: (1) How should one
formulate a population PK/PD model to account for
structural model deficiencies? (2) Given sparsely sampled,
incomplete, and noise-corrupted PK/PD data, how should
one optimally estimate the parameters in such models?

Grey-box PK/PD modeling provides an attractive ap-
proach by combining prior physiological knowledge about the
modeled system with information from experimental data.
Stochastic state-space or grey-box models consist of stochastic
differential equations (SDEs) describing the dynamics of the
system in continuous time and a set of discrete time
measurement equations. The advantage of such models is that
they allow for decomposition of the noise affecting the system
into a system noise term representing unknown or incorrectly
specified dynamics and a measurement noise term accounting
for uncorrelated errors such as assay error (4Y6).

The approach considered in this article aims to pur-
sue the above mentioned questions by implementing SDEs
in a nonlinear mixed-effects modeling setup, as previously
investigated by Overgaard et al. (7). The intra-individual
error is thereby decomposed into two types of noise: un-
correlated measurement noise arising from, for example, as-
say error, and system noise representing structural model
deficiencies. This setup makes identification of structural
model misspecification feasible by quantifying the model
uncertainty and provides the basis for systematic model de-
velopment (5,8).

The aims of this analysis are (1) to illustrate how SDEs
can be implemented in NONMEM (9) (the most commonly
used program for population PK/PD modeling), (2) demon-
strate its application to systematic model development using
a clinical PK data example, and finally (3) compare the
results to common practice using ordinary differential
equations (ODEs).

Theory

Nonlinear mixed-effects models based on SDEs extend
the first-stage model of the hierarchical structure by decom-
posing the intra-individual variability into measurement and
system noise (7). In the following, the population likelihood
function based on SDEs is formulated along with a proposed
algorithm for parameter estimation in SDE models. To ease
the notation, bold symbols refer to vector or matrix repre-
sentation. Readers not interested in the theory behind SDEs
and state filtering methods can skip these sections without
loss of understanding of the remainder of the article.

Nonlinear Mixed-Effects Models Based on SDEs

The first-stage model with SDEs written in state-space
form consists of a set of continuous time system equations in

Eq. (1) and discrete time measurement equations in Eq. (2)
(see [4,5,7]), that is,

dxit ¼ g xit; d it; �����ið Þdt þ ����wdwit;

wit � wis 2 N 0; t � sj jIÞ ð1Þð

yij ¼ f xij; �����iÞ þ eij; eij 2 N 0;@@@@@@Þð
�

ð2Þ

where x is the state vector, y is the observation vector, d is
the input vector, ����� is the individual parameter vector, t is the
time variable, swdw is the system noise, I is the identity
matrix, and e is the measurement error with mean zero and
covariance @@@@@. The subscript ij in Eq. (2) refers to the
measurement on individual i at time tij.

The structural model function g(I) is called the drift
term, the matrix sw is a scaling diffusion term, while w is a
standard Wiener process also referred to as Brownian motion
(10). The standard Wiener process w is a nonstationary
stochastic process with mutually independent (orthogonal)
increments (wt Y ws) which are Gaussian distributed with
mean zero and variance jt Y sjI. If the diffusion term sw is
zero, the SDE in Eq. (1) reduces to an ODE. The usual
physiological interpretation of the parameters is thereby
preserved in the SDE model formulation.

The second-stage model describing the inter-individual
variability (IIV) is included in the same way as for ODEs.
The individual parameters �����i are modeled as

�����i ¼ h ���;ZiÞ exp ����ið Þ; ����i 2 N 0;44Þðð ð3Þ

where h(I) denotes the structural type parameter model
which is a function of the fixed-effects parameters q,
covariates Zi, and random-effects parameters hi influencing
�����i. The random-effects hi are assumed independent and
multivariate normal distributed with zero mean and covari-
ance matrix W. The three levels of random-effects wit, eij, and
hi are assumed mutually independent for all i, t, and j.

The population likelihood function with SDEs can be
written as

L ���;@@@@@@; ����w;444ð Þ /
YN

i¼ 1

Z
p1 YYYYini

����i; ���;@@@@@@; ����w;d ijð Þp2 ����ij444ð Þd����i

¼
YN

i ¼ 1

Z
exp liÞd����i ð4Þð

where p1(I) and p2(I) are the distributions associated with
the first- and second-stage models, respectively, YYYYini

¼ yi1;½
. . . ; yini

� represents all ni observations of the ith individual, N
is the total number of individuals, while li is the individual
log-likelihood function (7).

Using the first-order conditional estimation (FOCE)
method which approximates the likelihood using an expan-
sion around the conditional estimates of the random effects
�̂���i, the population likelihood function with SDEs can be
written as

L ���; @@@@@@; ����w;444ð Þ �
YN

i¼1

$li
�1=2 exp liÞð j�̂��� i

���
��� ð5Þ
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where Dli is the Hessian of li. Further information about the
FOCE method as implemented in NONMEM can be found
in NONMEM Users GuideVpart VII (9).

Assuming a Gaussian conditional density for the first-
stage distribution density, the individual a posteriori log-
likelihood function li and its Hessian Dli are given by

li ¼ �
1

2

Xni

j¼ 1

�
��T

ij R
�1
i j j�1jð Þ��ij þ log 2pRi j j�1jð Þj

�� �
� 1

2
����T

i 444
�1����i

� 1

2
log 2�444j j ð6Þ

$li ¼ �
Xni

j¼1

r��T
ij R�1

i j j�1jð Þr��ij � 444�1 ð7Þ

respectively, where r��ij ¼ @��ij

@����

���
�̂��i

is the gradient of the one-step
prediction error ��ij with respect to the random effects h.

The one-step output prediction ŷi j j� 1jð Þ is the optimal
prediction of the jth measurement before that measurement
is taken while Ri( j|jj 1) is the expected covariance for that
prediction. As indicated in (7), the Gaussian density is
completely described by

ŷi j j� 1jð Þ ¼ E yij YYYYi j� 1ð Þ; �
��

h i
ð8Þ

Ri j j� 1jð Þ ¼ V yij YYYYi j� 1ð Þ; �
��

h i
ð9Þ

where ŷi j j�1jð Þ and Ri( j| jj1) are the conditional mean and
covariance, respectively, of yij conditioned on all previous
measurements up to time tjj1 for individual i denoted by
YYYYi j� 1ð Þ ¼

�
yi1; . . . ; yi j� 1ð Þ

�
. The subscript notation i( j | jj1) in

Eqs. (8) and (9) refers to the jth prediction based on all j Y 1
previous measurements for individual i.

The one-step prediction error are calculated by

��ij ¼ yij � ŷi j j� 1jð Þ; ��ij 2 N
�
0;Ri j j� 1jð Þ

�
ð10Þ

The one-step prediction ŷi j j�1jð Þ and the associated
covariance Ri( j | jj1) are calculated using the Extended
Kalman Filter (EKF), which is described in the following
section.

Extended Kalman Filter

The Extended Kalman Filter (EKF) (11,12) provides an
efficient recursive algorithm to calculate the conditional
mean and covariance for the assumed Gaussian conditional
densities needed to evaluate the likelihood function in Eq.
(5) (10,13).

The EKF equations can be grouped into two parts:
prediction and update equations. The prediction equations
predict the state and output variables one step ahead (i.e.,
until the next measurement) while the update equations
update the state predictions with the newly obtained
measurement.

The one-step state prediction equations of the EKF,
which are the optimal (minimum variance) prediction of the
mean and covariance, can be calculated by solving the state

and state covariance prediction equations from measurement
time tjj1 until tj, that is,

dx̂xxi t j�1jð Þ

dt
¼ gg x̂xxi t j� 1jð Þ; d i; ����iÞ; t 2 tj� 1; tj

� ��
ð11Þ

dP̂i t j� 1jð Þ
dt

¼ AitPi t j� 1jð Þ þ Pi t j� 1jð ÞA
T
it þ ����w����

T
w;

t 2 tj� 1; tj

� �
ð12Þ

with initial conditions

x̂xxi 1 0jð Þ ¼ xxxi0
ð13Þ

Pi 1 0jð Þ ¼ Pi0 ¼
Z t2

t1

eAits����w����
T
w

�
eAits

�T
ds ð14Þ

where t1 and t2 are the sampling times of the two first
measurements while xi0 are the initial states which can be
prespecified or estimated along with the other model
parameters. The integral in Eq. (14) specifying the initial
state covariance Pi0 is taken as the integral of the Wiener
process and the dynamics of the system over the time
difference between the first two measurements. This initial-
ization scheme has proven to be successful in other software
implementations (6).

The EKF is an exact solution to the state filtering
problem for linear systems, while it is a first-order approx-
imative filter for nonlinear systems. Hence, the Ait matrix is
calculated for nonlinear systems by linearizing the state
equations in Eq. (11) using a local first-order Taylor
expansion of g(I) about the current state at each time instant
t, that is,

Ait ¼
@g

@x

����
x¼ x̂iðt j�1j Þ

ð15Þ

Next, the EKF one-step output prediction equations are
calculated by

ŷi j j� 1jð Þ ¼ f ����i; x̂i j j� 1jð ÞÞ
�

ð16Þ

Ri j j� 1jð Þ ¼ CijPi j j� 1jð ÞC
T
ij þ @@@@@ ð17Þ

where Cij is obtained using a local first-order Taylor ex-
pansion of the measurement equation in Eq. (2), that is,

Cij ¼
@f

@x

����
x¼ x̂xxxi j j j� 1ð Þ

ð18Þ

The one-step output prediction covariance Ri( j | jj1) is
thus the sum of the state covariance associated with the
observed states (CijPi( j | jj1)Cij

T) and the covariance of the
actual measurement (@@@@@). In case of no system noise (sw = 0),
the one-step output prediction ŷi j j� 1jð Þ and covariance
Ri( j | jj1) will reduce to the ODE predictions ŷyij and residual
covariance @@@@@@ typically used in the NONMEM likelihood
function.

Finally, the one-step state and state covariance predic-
tions are updated by conditioning on the jth measurement
using the EKF state update equations, that is,

x̂i j jjð Þ ¼ x̂i j jj � 1ð Þ þKij

�
yij � ŷi j j� 1jð Þ

�
ð19Þ

Pi j jjð Þ ¼ Pi j j�1jð Þ �KijRi j j� 1jð ÞK
T
ij ð20Þ
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where x̂i j jj � 1ð Þ is the updated state estimate, Pi( j |j) is the
updated state covariance, and the Kalman gain Kij is
calculated by

Kij ¼ Pi j j� 1jð ÞC
T
ij R

� 1
i j j� 1jð Þ ð21Þ

The optimal state estimate at time j denoted by x̂i j jjð Þ is
equal to the best state prediction x̂i j j� 1jð Þ before the mea-
surement is taken plus a correction term consisting of an
optimal weighting value times the difference between the
measurement yij and the one-step prediction of its value. For
measurements with a large variance @@@@, the Kalman gain
becomes small and the measurement is weighted lightly
owing to the little confidence in the noisy measurement. In
the limit as @@@@ Y V, the Kalman gain becomes zero and the
infinitely noisy measurement is completely ignored in the
update. When the system noise is dominant implying
uncertainty in the output of the system model, the measure-

ment is heavily weighted. In the limit when sw Y V and P Y
V, the Kalman gain will approach 1 and the updated state will
be equal to the measurement (13).

The EKF algorithm specified above and summarized in
Table I is recursive by repeating the calculations of the one-
step state and output prediction equations in Eqs. (11)Y(18)
as well as the state update equations in Eqs. (19)Y(21) for
each individual measurement.

METHODS

Implementation of EKF Algorithm in NONMEM

The EKF algorithm for parameter estimation in SDE
models is implemented in NONMEM by modifying the
standard NONMEM data file and control stream as de-
scribed later for a clinical PK data example. An overview of

Table I. Implementation of Recursive EKF Algorithm in NONMEM VI

Control stream

implementation EKF algorithm Equation Description

35Y37 x̂i 1j0ð Þ ¼ xi0 (13) Specify initial state conditions

Data file PPi 1 0jð Þ ¼
R t2

t1
eAits ����w����

T
w eAits
� �T

ds (14) Calculate initial state covariance

for i ¼ 1 to N do For each of the N subjects

for j ¼ 1 to ni do For each of the ith subject’s ni

measurements

104Y106
dx̂i t j� 1jð Þ

dt
¼ g x̂i t j� 1jð Þ;d i; ����iÞ
�

(11) Compute one-step state prediction

at time tj

108Y113
dPi t j� 1jð Þ

dt
¼ AitPi t j�1jð Þ þ pi t j�1jð ÞA

T
it þ ����w����

T
w (12) Calculate one-step state covariance

prediction

120 ŷi j j� 1jð Þ ¼ f
�
����i; x̂i j j� 1jð Þ

�
(16) Compute one-step output prediction

at time ŷyyi j j� 1jð Þ

72 and 121 Ri j j� 1jð Þ ¼CijPi j j�1jð ÞC
T
ij þ

XXXXXX
(17) Calculate one-step output covariance

prediction variance

73Y75 Kij¼ Pi j j� 1jð ÞC
T
ij R
�1
i j j� 1jð Þ (21) Compute the Kalman Gain

78Y80 x̂i j jjð Þ ¼ x̂i j j�1jð Þ þKij

�
yij � ŷi j j�1jð Þ

�
(19) Update state prediction with the jth

measurement

82Y87 Pi j jjð Þ¼ Pi j j� 1jð Þ �KijRi j j� 1jð ÞK
T
ij (20) Update state covariance

end for

end for

Table II. Extract from the Example SDE Data File

ID ORIG TIME AMT CMT DV EVID MDV

1 Y10.19 0.00 I I I 2 1

1 0.00 10.19 80000 1 I 1 1

1 0.00 10.19 80000 2 I 1 1

1 7.97 18.16 I I 8.84 0 0

1 7.97 18.16 I I I 2 1

1 7.97 18.16 I I I 3 1

1 26.13 36.32 I I 13.88 0 0

1 26.13 36.32 I I I 2 1

1 26.13 36.32 I I I 3 1

��� ��� ��� ��� ��� ��� ��� ���

The data file includes the following records: ID (patient number), ORIG (original sampling time), TIME (new time variable), AMT (amount),

CMT (compartment), EVID (event identifier), and MDV (missing dependent variable) record.
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the necessary modifications is shown in Table I. The
necessary control stream and data file modifications are
made automatically using an S-PLUS script, which can be
obtained by contacting the corresponding author.

Data File Modifications

The necessary data file modifications are illustrated by an
extract from the example SDE data file in Table II. In order for
the EKF to work, the initial states xi0 and the associated
covariance matrix Pi0 must be specified. The initial states xi0

are often zero when dealing with pharmacokinetics of an
exogenous compound but might otherwise be specified to
some initial amounts or estimated along with the other model
parameters. The integral in Eq. (14) specifying the initial state
covariance Pi0 cannot be entered directly into NONMEM.
This problem is handled by rewinding the time variable so
that the estimation starts at tstart calculated by

tstart ¼ t1 � t2 � t1ð Þ ð22Þ

where t1 and t2 are the sampling times of the first and second
measurements, respectively, which in the example data in
Table II are equal to 7.97 and 26.13 h.

The initial conditions Pi0 are thereby calculated exactly as
the integral in Eq. (14) at the time of the first measurement. If
tstart is negative, it is necessary to create a new time variable

since negative time data records are not accepted in NON-
MEM. For the example data in Table II, the new time variable
(TIME) is therefore calculated by subtracting tstart from the
original sampling time variable (ORIG), that is, TIME =
ORIG j tstart. This new starting time is implemented in the
data file by an event identification (EVID) record equal to 2
and the missing dependent variable (MDV) data item set to 1.

The doses in Table II are specified as usual with a dose
event record (EVID = 1). Finally, each observation is duplicated
and presented as three records in the data file with an EVID = 0,
EVID = 2, and EVID = 3 record. The EVID = 0 makes the one-
step prediction as usual, the EVID = 2 record stores the one-
step prediction x̂xxi j jj �1ð Þ and Pi( jjjj 1) from the EVID = 0 record
before the states are reset to zero and updated with the EKF
updates in the subsequent EVID = 3 record.

Control Stream Modifications

The NONMEM SDE control stream for a one-compart-
ment disposition model with two absorption components is
shown in Appendix. The one-step prediction equations of
the EKF are specified in the $DES block of the NONMEM
control stream. The k kþ 1ð Þ

2 one-step state covariance predic-
tion equations in lines 108Y113 associated with the k one-step
state prediction equations in lines 104Y106 are calculated
using Eq. (12). The one-step state and state covariance
prediction equations (both of which are systems of ODEs)

Table III. Summary of Population Pharmacokinetic Parameter Estimates for the Initial Model with First-Order Absorption (Initial Model),

Tracking Absorption Half-Life Model (Tracking t1 /2,abs), and the Final Model with Two Absorption Components (Final Model)

Model

Units

Initial model Tracking t1/2,abs
a Final model

Method

OFV

Parameter

SDE

-1809

Estimate

SDE

-323

Estimate

SDE

-3387

Estimate RSE (%)

ODE

-3236

Estimate RSE (%)

t1/2,abs h 484 V V V V V
t1/2,abs

0 h V 245 V V V V
t1/2,fast h V V 32.3 9.47 32.5 9.45

t1/2,slow h V V 949 3.94 922 4.09

CL/F 1
h 4.64 12.1 5.48 3.69 5.68 7.59

V/F l 20.9 108 102 8.41 102 13.2

Fr V V V 0.112 3.86 0.107 4.15

Frel
20 V 0.511 V 0.71 3.66 0.735 7.84

w t1=2; abs
% 25.9 V V V V V

w t1=2; fast
% V V 31.7 10.9 29.7 12.7

w t1=2; slow
% V V 24.7 11.7 31.5 8.40

wCL % V 31.9 V V V V
wV % V 54.1 V V V V
wFr % V V 33.8 10.1 36.8 8.59

w Frel
% 29.8 V 27.8 6.65 28.0 6.18

sprop % 29.8 15.7 14.5 3.98 17.6 3.85

sw
abs 2gffiffi

h
p 82.2 0.00991 V V V V

s
w
central

2gffiffi
h
p 0.0b 0.0

b
0.0

b
V V V

�
t1=2;abs
w

1ffiffi
h
p V 0.0346 V V V V

sw
fast 2gffiffi

h
p V V 0.0

b
V V V

sw
slow

2gffiffi
h
p V V 244 10.6 V V

a Single<dose data from group 3 only.
b Fixed parameter.
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are progressed until the time of the next measurement.
The one-step output prediction equation in line 120,

which is a function of the central compartment and its
volume, is defined in the $ERROR block. The standard
deviation of the one-step prediction error is calculated in line
121 as the square root of RRi( j|jj 1) in Eq. (17).

Updating the state predictions and covariances is slightly
tricky in NONMEM, because this involves first a reset of the
compartment and subsequently an update to the new value,
which is all performed at EVID = 3. Lines 34Y68 store the
one-step state and state covariance prediction values, and
ensure that these values are not overwritten during system
reset. Calculation of the measurement updated predictions is
based on the stored state values, as performed in lines 71Y87.
First, the one-step output prediction variance RRi(jjjj1) is
calculated. Next, the Kalman gain Kij is calculated in lines
74Y76, and the state and state covariance updates are
calculated in lines 78Y87. Finally the execution of the update
is performed in lines 91Y99.

Example Data

Clinical PK data of GnRH antagonist degarelix is used
to illustrate the application of SDEs in population PK/PD
modeling.

Study Design

The study was designed as a 6-month, multicenter, open-
labeled, equally randomized, parallel group trial investigating
the efficacy and safety of three dose regimens of degarelix
in prostate cancer patients. The study was performed in
accordance with the Declaration of Helsinki and according to
Good Clinical Practice (GCP). The appropriate independent
ethics committee approved the protocol prior to study
initiation. Written informed consent was obtained from all
patients prior to participation in the study.

The following dose regimens were included in the study:

Group 1 received 80 mg at days 0 and 3, and 40 mg at
day 28 and every 4 weeks thereafter (80/80/40).

Group 2 received 40 mg at days 0, 3, 28, and every
4 weeks thereafter (40/40/40).

Group 3 received 80 mg at day 0, 20 mg at day 28, and
every 4 weeks thereafter (80/Y/20).

The doses were administered as subcutaneous (SC)
injections of the following volume and concentrations:

80 mg as two SC injections of 2 ml with 20 mg/ml.
40 mg as one SC injection of 2 ml with 20 mg/ml.
20 mg as one SC injection of 2 ml with 10 mg/ml.

One hundred and twenty-nine patients were randomized
to receive at least one dose of degarelix, with 43 patients in
treatment group 1, 46 patients in treatment group 2, and 40
patients in treatment group 3. Blood samples were drawn
before dosing at each visit except for visit 1. At visit 2, an
additional blood sample was taken 8 h after dosing. Degarelix
plasma concentrations were measured using a validated liquid
chromatography with tandem mass spectrometric detection

(LC-MS/MS) method according to current guidelines for
bioanalytical samples (14) with a lower limit of quantification
(LLOQ) of 0.5 ng/ml.

Data Analysis

The data analysis was performed using NONMEM
version VI beta with subroutines ADVAN6 and ADVAN8
and relative tolerance set to six on a Pentium 4-M 2.0 GHz
computer with 512 MB RAM running Windows XP. Three
significant digits were requested in the parameter estimates.
All models were estimated using the first-order conditional
estimation (FOCE) method.

The individual parameter vector �����i was assumed to be
distributed around the population mean parameter vector q
according to the exponential IIV model in Eq. (3), that is,

�����i ¼ ��� exp �����ið Þ; �����i 2 N 0;44ð Þ ð23Þ

where the random-effects hi influencing �����i are assumed
multivariate normal distributed with zero mean and cova-
riance matrix W. The inter-individual covariance matrix W
was specified as a diagonal matrix with wk

2 in the kth diago-
nal element. Correlations between all pairs of hi were
investigated in the pre-analysis but were found to be non-
significant.

RESULTS

To illustrate the application of SDEs in population PK/
PD modeling, clinical PK degarelix data are used in the
following systematic model development scheme motivated
by (8). First, the structural model misspecifications of the
initial PK model are pinpointed using the diffusion term
estimates. Next, the model is expanded to track unexplained
time variations in the entity of the model believed to be
deficient, which leads to an extension of the SDE model.
Finally, the parameter estimates of the final SDE model are
compared with the corresponding ordinary differential equa-
tion (ODE) model.

Initial Model

A one-compartment disposition model with first-order
absorption and elimination was selected as the initial PK
model describing the SC administration of degarelix. From
previous studies, it is known that the SC release of degarelix
does not follow simple first-order absorption kinetics (15). But
in order to demonstrate the use of SDEs for systematic
model development, it was chosen as the initial PK model.
The system of SDEs governing the initial PK model can be
written in matrix notation together with the observation
equation as

d
A1

A2

� 	
¼
�kaA1 þ FrelD tð Þ

kaA1 �
CL

V
A2

 !

dt þ �abs
w 0
0 �central

w

� 	
dwt

log c ¼ log
A2

V
þ e ð24Þ
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where A1 and A2 are the state variables for the amount of
drug in the SC absorption and central compartment, respec-
tively, while c is the observed plasma degarelix concentra-
tion. The diffusion term sw was specified as a diagonal matrix
to pinpoint possible model misspecifications. The presence of
significant parameters in the diffusion term is an indication
that the corresponding drift term may be incorrectly specified
(8). The system noise swdwt is additive while sprop is the
coefficient of variation for the measurement error.

The model in Eq. (24) was parameterized in terms of CL
and V symbolizing the clearance and volume of the central
compartment, respectively, while the first-order absorption
rate constant ka was estimated as the absorption half-life
t1=2;abs ¼ log 2

ka
and D(t) is the input from the SC degarelix

doses. The bioavailability of SC injected degarelix doses has
previously been reported to be dependent on the concentra-
tion of the injected suspension (15,16). The relative bioavail-
ability Frel of the 10 mg/ml doses was fixed to 1 while the
bioavailability of the 20 mg/ml doses relative to the 10 mg/ml
doses was estimated as the parameter Frel

20. IIV was estimated
for the parameters t1/2,abs and Frel using the exponential
model in Eq. (23).

The parameter estimates of the initial SDE model are
shown in Table III. The diffusion parameters can be used to
pinpoint possible model misspecifications and provide infor-
mation on how to reformulate the model. The diffusion
parameter associated with the absorption compartment sw

abs

was estimated to 82.2 �gffiffiffiffi
hr
p with an asymptotic relative standard

error (RSE) estimate of 41.1% while that of the central
compartment sw

central was insignificant and fixed to zero in the
final estimation. This may indicate that the disposition of
degarelix is sufficiently explained by a one-compartment
disposition model while the first-order absorption model
inadequately describes the SC absorption profile of degarelix.

Tracking Absorption Half-Life Model

Since the diffusion term on the absorption compartment
was significant in the initial PK model, the point of interest
for the following model expansion should be the absorption

model. From previous studies, it is known that SC adminis-
tration of degarelix results in the formation of a gel-like in
situ SC depot from which the drug is released into the
systemic circulation (15). The depot undergoes a maturation
stage where the density of the gel increases and the release
rate decreases.

The absorption half-life is therefore suspected to change
over time. Instead of jumping to conclusions by imposing a
structural model for this behavior, we want to track the
absorption half-life t1/2,abs and thereby confirm/reject whether
it is constant throughout the study. This is done by expanding
the model with a state equation for the absorption half-life
that fluctuate randomly like a Wiener process. For a given
individual, the EKF gives the filtered estimate of the
evolution of t1/2,abs. The drift term in the state equation for
the absorption half-life is set to zero, thereby assuming it is
driven only by the random variation �

t1=2;abs
w dwt. If �

t1=2;abs
w

turns out to be significant, it is an indication that the
absorption half-life is not constant since the variations in
t1/2,abs are explained by the diffusion term.

The model for tracking the variations in t1/2,abs can
thereby be written as

d

A1

A2

log t1=2;abs

0

BBB@

1

CCCA
¼

� log 2

exp log t1=2;abs

� � A1 þD tð Þ

log 2

exp log t1=2;abs

� � A1 �
CL

V
A2

0

0

BBBBBBB@

1

CCCCCCCA

dt

þ

�abs
w 0 0

0 �central
w 0

0 0 �
t1=2;abs
w

0

BBB@

1

CCCA
dwt

log c ¼ log
A2

V
þ e ð25Þ

where t1/2,abs is the state variable for the absorption half-life
with initial value t1/2,abs

0 . To constrain t1/2,abs to be non-

Fig. 1. Tracking absorption half-life t1/2,abs for patients in group 3 (80/-/20) using single-dose data only.

Each line represents the tracked absorption half-life for one individual.
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negative, multiplicative (i.e., state dependent) system noise is
needed. By log-transforming the state equation for the
absorption half-life, the multiplicative system noise on t1/2,abs

was transformed into additive system noise in Eq. (25) which
can be estimated using the EKF based algorithm (7). IIV was
estimated for the parameters CL and V using the exponential
model in Eq. (23).

For simplicity reasons in the implementation of this
model, only single-dose data from group 3 were included in
this estimation since a new depot is formed at each injection
which would make it necessary to track the different
absorption half-lives from each depot. The estimated param-
eters for the tracking absorption half-life model are shown in
Table III. The diffusion parameter on the absorption com-
partment sw

abs was now reduced to 0.00991 2gffiffiffiffi
hr
p while �

t1=2;abs
w

was estimated to 0.0346 1ffiffiffiffi
hr
p with an asymptotic RSE estimate

of 8.99%. This confirms the suspicion that t1/2,abs is not
constant throughout the study since �

t1=2;abs
w is significantly

different from zero.
Tracking of the absorption half-life is shown in Fig. 1

where the updated EKF estimates of t1/2,abs using Eq. (19) are
plotted as a function of time. The initial absorption half-life
estimate is 245 h and remains constant until approximately 3
days after drug administration for most of the patients. From
3 to 14 days the absorption half-life increases and seems to
reach a new constant or slightly decreasing level thereafter.
A reasonable approximation of the pattern seen in Fig. 1
would be a model with two absorption components, that is,
an initial fast absorption phase followed by a prolonged slow
release phase. This interpretation corresponds well with the
clinical observation that SC administration of degarelix
results in the formation of a depot out of which the drug
diffuses.

Final Model

The final step in this illustrative example is to reformu-
late the initial PK model with the information obtained by
tracking the absorption half-life. The final PK model with
two first-order absorption components (see Fig. 2) was
modeled by the following system of SDEs and observation
equation

d

A1

A2

A3

0

BBBB@

1

CCCCA
¼

�ka;1A1 þ Fr FrelD tð Þ

�ka;2A2 þ 1� Frð ÞFrelD tð Þ

ka;1A1 þ ka;2A2 �
CL

V
A3

0

BBBBBB@

1

CCCCCCA

dt

þ

� fast
w 0 0

0 � slow
w 0

0 0 �central
w

0

BBBB@

1

CCCCA
dwt

log c ¼ log
A3

V
þ e

where A1, A2, and A3 are the state variables for the amount
of drug in the slow SC absorption, fast SC absorption, and

central compartment, respectively. The fraction of the SC
dose being absorbed via the fast and slow absorption route
were estimated as Fr and (1 Y Fr), respectively.

The first-order absorption rate constants ka,1 associated
with the fast absorption components was estimated as the
absorption half-life t1=2; fast ¼ log 2

ka;1
. To ensure that t1=2; slow ¼

log 2
ka;2

was constrained to be larger than the t1/2,fast even after
taking IIV into account, the following parametrization was
chosen.

t1=2; slow; i ¼ t1=2; slow�fast exp �t1=2; slow�fast; i

� 

þ t1=2; fast; i ð27Þ

where t1/2, slowYfast is the typical individual’s difference be-
tween t1/2, fast and t1/2, slow. IIV was estimated for the
parameters t1/2, fast, t1/2, slow, and Frel using the exponential
model in Eq. (23). The parameter Fr was constrained to be
between 0 and 1 by logit-transformation, that is,

� ¼ log
Fr

1� Fr
ð28Þ

and the individual parameter Fri was calculated by

Fri ¼
exp �þ �Fri
ð Þ

1þ exp �þ �Fri
ð Þ ð29Þ

The SDE control stream for the final PK model is shown
in Appendix A. The run times for the estimation of model
parameters in Eq. (26) using SDEs was about three times
that of the corresponding ODE model. Since the one-step
output prediction variance RRi( j|jj1) in the SDE model de-
pends on the individual h’s [see Eq. (17)], the FOCE method
with interaction (FOCE-INTER) was used. For the cor-
responding ODE model (i.e., sw = 0), the FOCE method
was applied without the INTER option since the intra-
individual variance is homoscedastic on the log-scale.

The population PK parameter estimates from the final
PK model with two absorption components using ODEs and
SDEs are summarized in Table III. The diffusion parameters
sw

fast and sw
central for the fast absorption and central com-

Fig. 2. Schematic illustration of the final PK model for SC injected

GnRH antagonist degarelix. The model parameters are explained in

the text.

(26)
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partment, respectively, were fixed to zero in the final run
since they were found not to be significantly different from
zero. The only diffusion parameter that was estimated was
therefore the diffusion parameter on the slow absorption
compartment. The estimated standard deviation of �̂ slow

w ¼
244 2gffiffiffiffi

hr
p for the additive system noise indicates that there

still is a model misspecification in the slow absorption com-
partment. However, it is relatively small compared to the
amount of drug in the slow absorption compartment which
ranges from 2.500 to 80.000 mg throughout the study. Other
more complex absorption models such as diffusion out of a
spherical SC depot have previously been suggested to
describe the PK profile of SC administered degarelix (15).
For this study, the final PK model with two absorption com-
ponents representing an initial fast release followed by a
prolonged slow release was considered acceptable at des-
cribing the observed data.

Since the SDE and ODE models are nested, the sig-
nificance of including the diffusion parameter sw

slow can be
tested using the likelihood ratio test (LRT) with DOFV =
j3236 j (j3387) = 151 > c2(1)0.95 = 3.84 which is highly
significant with a p-value < 0.001. When comparing the SDE

and ODE parameter estimates, the parameters which seem
affected the most by including system noise on the slow
absorption compartment are wt1=2;slow

and sprop. The inter-
individual variability of t1/2,slow was reduced from a
coefficient of variation (CV) of 31.5% to 24.7% while the
CV of the proportional measurement error was deflated from
17.6% to 14.5% when using SDEs instead of ODEs. The
RSE estimates were more or less the same for the SDE and
ODE models.

The one-step individual SDE predictions, updates, and
prediction interval are shown together with the individual
ODE predictions for an illustrative patient from the study in
Fig. 3. The observed discrepancy between the SDE and ODE
predictions are due to the SDE predictions being conditioned
on all previous observations and therefore updated at each
sampling time (visualized by the vertical lines in the SDE
predictions).

The ODE predictions are considerably lower than
the observed plasma concentrations between 1 and 3 months
and above thereafter, which falsifies the statistical assump-
tion of uncorrelated residuals. All except one of the one-
step SDE predictions are within the SDE prediction interval

Fig. 3. One-step individual SDE predictions, updates, and prediction interval plotted together with the

individual ODE predictions for an illustrative patient. The SDE prediction interval is calculated by

ŷj j�1j �
ffiffiffiffiffiffiffiffiffiffiffi
Rj j�1j

p
.

Fig. 4. Observed and SDE predicted plasma degarelix concentration-time profiles plotted on a

semilogarithmic scale with each line representing data from one patient.
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in Fig. 3 calculated by ŷj j�1j �
ffiffiffiffiffiffiffiffiffiffiffiffi
Rj j�1j

p
using Eqs. (16) and

(17). The only SDE prediction outside the prediction inter-
val is around 4 months where the observed plasma concen-
tration is 1 ng/ml while the SDE prediction is close to 3
ng/ml, making it hard to falsify this model based on correla-
tion structure or distribution of residuals. The subsequent
SDE predictions are again all within the SDE prediction
interval. The ODE predictions show systematic deviations
from the observed data and exhibit a high degree of auto-
correlation.

The observed degarelix concentrationYtime profiles for
all 129 patients in the study are displayed in Fig. 4 together
with the one-step individual predictions and the population
predictions from the SDE model. The final PK model seems
to describe the observed data well with good agreement
between predicted and observed plasma concentrations as
shown in Fig. 5.

DISCUSSION

The variability in population PK/PD modeling is tradi-
tionally divided into inter- and intra-individual variability.
This article suggests to further decompose the intra-individ-
ual variability into measurement and dynamic noise by
considering SDEs instead of ODEs in nonlinear mixed-
effects models. The system noise represents structural model
misspecifications or true random fluctuations within the
system. By quantifying the model uncertainty in the system
noise, it is possible to identify which parts of the model are
misspecified, and the estimated system noise can be used as a
tool for systematic model development. This would not be
possible using similar approaches such as an AR(1) model (3)
since it acts only on the measurement equation and not the
dynamics of the system.

In the present analysis, the recursive EKF algorithm was
implemented in NONMEM version VI beta for parameter
estimation in SDE models. The EKF corrects for structural
model deficiencies by updating the system with the individual
measurements at each sampling time, unlike the ODE
approach which progresses the system without including this
additional information. The algorithm works only with
NONMEM version VI beta because it is necessary to have
access to the state estimates in $PK which is not possible with

NONMEM version V (see lines 49Y57 of the SDE control
stream example in Appendix).

The application of SDEs for systematic model develop-
ment was illustrated using a clinical PK data example.
Starting from a one-compartment disposition model with
first-order absorption, a PK model for SC injected degarelix
was systematically developed by pinpointing model deficien-
cies in the absorption model. By tracking variations in the
absorption half-life, it could be shown that the absorption
profile could be approximated by a model with two
absorption components describing the initial fast absorption
phase followed by a prolonged slow release phase.

The iterative framework for systematic model develop-
ment used in this analysis is summarized below (8).

& Formulate an initial SDE model with a diagonal
diffusion term.

& Identify possible model misspecifications by examin-
ing the significant diffusion term estimates.

& Extend the model with state equations for the
pinpointed model deficiencies.

& Track unexplained variations using the updated EKF
state estimates.

& Use the information obtained by tracking variations
to reformulate the model.

& Accept/reject model based on the diffusion term
estimates of the reformulated model.

In a recent publication by Bayard et al. (17), an inter-
acting multiple model (IMM) algorithm for tracking chang-
ing PK parameters was presented. The IMM and EKF
algorithms are practically identical. The IMM algorithm,
however, cannot be used for quantifying model uncertainty
owing to the multiple model formulation.

The introduction of system noise in the differential
equations gave a more satisfactory description of the
observed clinical PK data compared to the ODE model in
which the residuals were correlated. The SDE and ODE
model population parameter estimates were nearly identical,
however, since the system noise was relatively small in the
final PK model. For other systems in which the degree of
model misspecification is more dominant (e.g., nonlinear
pharmacodynamic models of complicated physiological sys-
tems), the discrepancies between the SDE and ODE

Fig. 5. Observed vs. individual (left) and population SDE predicted (right) plasma degarelix con-

centrations plotted on a double-logarithmic scale.
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parameter estimates are expected to be greater since the
intra-individual variance decomposition into measurement
and system noise resembles the true physiological variations
in the modeled system more correctly.

In conclusion, the EKF-based algorithm was successfully
implemented in NONMEM for parameter estimation in
population PK/PD models described by systems of SDEs. A
clinical PK data example was used to illustrate the applica-
tion of SDEs for systematic model development by quanti-
fying model uncertainty and tracking unexplained variations.
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1 $PROBLEM SDE 1-COMP MODEL WITH 2 ABS COMPONENTS 65 A7 = A7

$INPUT ID HOUR TIME AMT CMT DV EVID MDV A8 = A8

$DATA SDE.dta IGNORE=@ A9 = A9

$SUBROUTINE ADVAN6 TOL 6 DP ENDIF

5 $MODEL COMP = (ABS1) COMP = (ABS2) COMP = (CENT) ; EKF state update equations

COMP = (P11) COMP = (P12) COMP = (P13) 70 IF(EVID.EQ.3) THEN

COMP = (P22) COMP = (P23) COMP = (P33) ; Output cov. R_jjjj1 = C P_jjjj1 C^T + Sig Sig^T

RVAR = A9/(A3*A3) + SIG**2

$THETA(0,5.50)(0,100)(0,30.0)(0,900)(0,0.10,1) ; Kalman Gain K_j = P_jjjj1 C^T R_jjjj1^j1
10 (0,0.70,1)(0,0.20)(0,1)(0,250)(0,1) K1 = A6/(A3*RVAR)

$OMEGA 0.25 0.25 0.25 0.25 75 K2 = A8/(A3*RVAR)

$SIGMA 1 FIX K3 = A9/(A3*RVAR)

; State update eq. x_jjj=x_jjjj1+K_j (y_jjy_jjjj1)
$PK A1UP = A1 + K1*(OBSj LOG(A3/V1))

15 CL = THETA(1) A2UP = A2 + K2*(OBSj LOG(A3/V1))

V1 = THETA(2) 80 A3UP = A3 + K3*(OBSj LOG(A3/V1))

HL1 = THETA(3)*EXP(ETA(1)) ; State cov. update eq.P_jjj=P_jjjj1jK_j R_jjjj1 K_j^T

HL2 = THETA(4)*EXP(ETA(2)) + HL1 P1UP = A4 j K1*RVAR*K1

KA1 = LOG(2)/HL1 P2UP = A5 j K1*RVAR*K2

20 KA2 = LOG(2)/HL2 P3UP = A6 j K1*RVAR*K3

TFR = THETA(5) 85 P4UP = A7 j K2*RVAR*K2

RHO = LOG(TFR/(1-TFR)) P5UP = A8 j K2*RVAR*K3

FRAC = EXP(RHO+ETA(3))/(1+EXP(RHO+ETA(3))) P6UP = A9 j K3*RVAR*K3

TBIO = 1 ENDIF

25 IF(CONC.EQ.20) TBIO = THETA(6) ; Update states

BIO = TBIO*EXP(ETA(4)) 90 IF(A_0FLG.EQ.1) THEN

SIG = THETA(7) A_0(1) = A1UP

SGW1 = THETA(8) A_0(2) = A2UP

SGW2 = THETA(9) A_0(3) = A3UP

30 SGW3 = THETA(10) A_0(4) = P1UP

F1 = FRAC*BIO 95 A_0(5) = P2UP

F2 = (1-FRAC)*BIO A_0(6) = P3UP

; Initialize state and state covariance equations A_0(7) = P4UP

IF(NEWIND.NE.2) THEN A_0(8) = P5UP

35 AHT1 = 0 A_0(9) = P6UP

AHT2 = 0 100 ENDIF

AHT3 = 0

PHT1 = 0 $DES

PHT2 = 0 ; State predicton eq. dx_tjj/dt = g(x_tjj,d,phi)
40 PHT3 = 0 DADT(1) = jKA1*A(1)

PHT4 = 0 105 DADT(2) = jKA2*A(2)

PHT5 = 0 DADT(3) = jKA1*A(1) + KA2*A(2) j CL/V1*A(3)

PHT6 = 0 ; State cov. dP_tjj/dt=A_t P_tjj+P_tjj A_t^T+SGW SGW^T

ENDIF DADT(4) = j2*KA1*A(4) + SGW1*SGW1

45 ; Store observations for EKF update DADT(5) = j(KA1+KA2)*A(5)

IF(EVID.EQ.0) OBS = DV 110 DADT(6) = j(KA1+CL/V1)*A(6) + KA1*A(4) + KA2*A(5)

; Store one-step predictions for EKF update DADT(7) = j2*KA2*A(7) + SGW2*SGW2

IF (EVID.NE.3) THEN DADT(8) = j(KA2+CL/V1)*A(8) + KA1*A(5) + KA2*A(7)

50 A1 = A(1) DADT(9) = 2*KA1*A(6)+2*KA2*A(8)j2*CL/V1*A(9)+SGW3*SGW3

A2 = A(2)

A3 = A(3) 115 $ERROR (OBS ONLY)

A4 = A(4) IF (ICALL.EQ.4) THEN

A5 = A(5) IF (DV.NE.0) Y = LOG(DV)

A6 = A(6) RETURN

55 A7 = A(7) ENDIF

A8 = A(8) 120 IPRED = LOG(A(3)/V1)

A9 = A(9) W = SQRT(A(9)/(A(3)*A(3)) + SIG**2)

ELSE IRES = DV Y IPRED
A1 = A1 IWRES = IRES/W

60 A2 = A2 Y = IPRED + W*EPS(1)

A3 = A3 125 $SIM (1)

A4 = A4 $EST METH=1 INTER

A5 = A5 $COV

A6 = A6

APPENDIX
NONMEM SDE Control Stream (See Table I)
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